

Caterina Vernieri, Sally Dawson, Andrey Korytov,

Patrick Meade, Isobel Ojalvo

March 28, 2022

Energy Frontier Workshop @ Brown University

Higgs and the exploration of the EF

- The Standard Model is not a complete theory
 - Gravity, neutrino mass, dark matter ...
- The Higgs boson is a potential window to probe physics Beyond the Standard Model
 - Searches for additional scalars
 - (Interplay with) Precision measurements of the Higgs boson properties
 - Higgs Global fits

Higgs in 2022

Phys. Lett. B 805 (2020) 135425

CMS-PAS-HIG-20-003

CMS-PAS-HIG-21-008

LHC -> HIGH LUMINOSITY LHC

Caterina Vernieri

Higgs physics at the HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

- 2-5% precision for most of Higgs couplings
- Larger uncertainties on Z
 γ and charm
- < 10% on the self-coupling
- Higgs width 5%

Higgs physics at the HL-LHC

The High Luminosity era of LHC will dramatically expand the physics reach for Higgs physics:

2-5% precision for most of Higgs couplings

To be updated: based on the new studies for Snowmass

• Higgs width 5%

Particle mass [GeV]

Higgs physics at the HL-LHC

NEW!

First extrapolation of KC

NEW!

From 3.3σ to 4.6σ on the expected SM σ_{HH}

Higgs as a guide

Higgs as a guide

Why leptons?

- Initial state well defined (& polarization) \implies High-precision measurements
- Higgs bosons appear in 1 in 100 events \Rightarrow Clean experimental environment and trigger-less readout

Higgs at e+e-

- · ZH is dominant at 250 GeV
- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH production accessible with ZHH

Exploring the complementarity between e^+e^- and LHC will lead to the most precise measurements

- · What do we want to learn on top of what HL-LHC will deliver?
- · Timelines matter ideally the next machine will minimize the gap with HL-LHC, also:
 - · As we gain knowledge, how do we prioritize the Higgs measurements?
 - Which energy to target ?
 - top-Yukawa, HH, extended Higgs sector with more generic Yukawa coupling scenarios will require > 500 GeV
 - LC approach is to start at 250 GeV and then ~500 GeV is it enough?
 - · Which measurement are to be prioritized after the 250 GeV run?
 - How relevant is to have polarized beams?

Which collider?

LEPTON COLLIDERS

- Circular e+e- (CEPC, FCC-ee)
 - · 90-350 GeV
 - strongly limited by synchrotron radiation above 350–400 GeV
- Linear e+e- (ILC, CLIC, C³)
 - · 250 GeV > 1 TeV
 - Reach higher energies, and can use polarized beams
- · μ+μ-
 - 3-30 TeV

HADRON COLLIDERS

• **75-200 TeV** (FCC-hh)

#Higgs bosons (millions)

Higgs couplings at future colliders

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - · Coupling to charm quark could be measured with an accuracy of ~1% in future e+emachines
 - Couplings to $\mu/\gamma/Z\gamma$ benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders

Higgs couplings at future colliders

- Future colliders under consideration will improve with respect to the HL-LHC the understanding of the Higgs boson couplings - 1-5%
 - Coupling to charm quark could be measured with an accuracy of ~1% in future e+emachines
 - Couplings to $\mu/\gamma/Z\gamma$ benefit the most from the large dataset available at HL-LHC
 - At low energy top-Higgs coupling is not accessible at future lepton colliders

New for Snowmass

- 17+5 submissions to EF01/2
- ATLAS+CMS HL-LHC: a new baseline to compare the next machine to
 - Higgs to μ/γ , self-coupling and differential measurements particularly relevant for the complementarity with e+e-
- H to ss at e+e-
- **Electron** Yukawa at circular e+e-
- CP studies at e+e-
- Higgs invisible e+e-
- Updated projections at muon collider

New from HL-LHC

YR projections based on analyses of partial Run 2 dataset Full Run 2 measurements have drastically improved previous results We need to update our HL-LHC projections

Updated Higgs couplings for ILC

arXiv:2203.07622
arXiv:1908.11299
arXiv:1506.07830

	ILC250		II	LC500	ILC1000		
coupling	full	no BSM	full	no BSM	full	no BSM	
hZZ	0.49	0.38	0.35	0.20	0.34	0.16	
hWW	0.48	0.38	0.35	0.20	0.34	0.16	
hbb	0.99	0.80	0.58	0.43	0.47	0.31	
h au au	1.1	0.95	0.75	0.63	0.63	0.52	
hgg	1.6	1.6	0.96	0.91	0.67	0.59	
hcc	1.8	1.7	1.2	1.1	0.79	0.72	
$h\gamma\gamma$	1.1	1.0	1.0	0.96	0.94	0.89	
$h\gamma Z$	8.9	8.9	6.5	6.5	6.4	6.4	
$h\mu\mu$	4.0	4.0	3.8	3.7	3.4	3.4	
htt	_		6.3	6.3	1.0	1.0	
hhh	_		20	20	10	10	
Γ_{tot}	2.3	1.3	1.6	0.70	1.4	0.50	
Γ_{inv}	0.36		0.32		0.32		

Note C³ would run at 550 GeV, a factor 2 improvement to the top-Yukawa coupling (*)

arXiv:1708.08912

arXiv:1801.02840

- There are extensive comparisons between the FCC-ee plan and the C3/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 ab-1 of polarized running is essentially equivalent to 5 ab-1 of unpolarized running.
 - Electron polarization is essential for this
 - There is almost no difference in the expectation with and without positron polarization.
 - more cross-checks of systematic errors.
 - relevant at high energy (> TeV) where the most important cross sections are initiated from e-Le+R

	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350
coupling	pol.	pol.	unpol.	unpol
HZZ	0.50	0.35	0.41	0.34
HWW	0.50	0.35	0.42	0.35
Hbb	0.99	0.59	0.72	0.62
H au au	1.1	0.75	0.81	0.71
Hgg	1.6	0.96	1.1	0.96
Hcc	1.8	1.2	1.2	1.1
$H\gamma\gamma$	1.1	1.0	1.0	1.0
$H\gamma Z$	9.1	6.6	9.5	8.1
$H\mu\mu$	4.0	3.8	3.8	3.7
Htt	_	6.3	_	_
HHH	_	27	-	_
$\overline{\Gamma_{tot}}$	2.3	1.6	1.6	1.4
Γ_{inv}	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

Higgs couplings at the muon collider

H to strange coupling

- Exploring ZH with Z going to leptons or neutrinos
- Combined limit of ks < 6.74 at 95% CL with 900/fb at 250 GeV (i.e. half dataset)

NEW!

BSM interpretation?

Extending the sensitivity beyond LHC to 2HDM

A spontaneous flavour violating (SFV) 2HDM allows for large couplings of additional Higgs to strange/light quarks while suppressing flavourchanging neutral currents

Higgs-electron Yukawa

• $\kappa_{\rm e} < 1.6$ at 95% CL

- Goal is to sharpen theoretical expectations / models (see summary from <u>Andrei Gritsan</u>)
 - · Connect to broader EFT and distinguish between linear and quadratic effects in the observables
- CP measurement using the **T Yukawa coupling** at e+e- at 250 GeV with a precision of 75 mrad
 - · Higher energy stages, at a TeV or higher, can be used to measure CP effects in the HZZ coupling by studying the ZZ-fusion Higgs production process (to be followed up)
- Higgs-top CP-structure via the tth production at the HL-LHC, FCC-hh and muon colliders.

Bounds on α at 95% CL ($\kappa_t = 1$)	Channel	Collider	Luminosity
$ lpha \lesssim 36^\circ \; [1]$	dileptonic $t\bar{t}(h \to b\bar{b})$	HL-LHC	$3~{ m ab}^{-1}$
$ \alpha \lesssim 25^{\circ}$ [2]	$t\bar{t}(h \to \gamma\gamma)$ combination	HL-LHC	$3~{ m ab}^{-1}$
$ lpha \lesssim 3^\circ$ [1]	dileptonic $t\bar{t}(h \to b\bar{b})$	$100~{ m TeV}~{ m FCC}$	$30 { m ~ab^{-1}}$
$ \alpha \lesssim 9^{\circ} [3]$	semileptonic $t\bar{t}(h \to b\bar{b})$	$10~{ m TeV}~\mu^+\mu^-$	$10 { m ab}^{-1}$
$ lpha \lesssim 3^\circ~[3]$	semileptonic $t\bar{t}(h \to b\bar{b})$	$30~{ m TeV}~\mu^+\mu^-$	$10 { m ab}^{-1}$

The Higgs Boson potential

- At the present time, we have no experimental evidence that the Higgs boson results from the scalar potential of the SM
 - · Observing double Higgs Boson production is crucial
- Precision measurements of double Higgs boson production can then be combined with single Higgs
 measurements for a better understanding of the structure of the Higgs potential.
- Models of new physics that contain multiple Higgs bosons can lead to the production of Higgs bosons with different masses, leading to new experimental signatures
 - · We have discussed a possible set of benchmarks for HH resonant interpretations:
 - Based on additional Singlet and 2HDM
 - Either that would be accessible at e+e- or higher energy collider and still not excluded by HL-LHC
 - Considerations about EWPT

arXiv:1910.00012 arXiv:2004.03505

- CMS & ATLAS projections have been updated
 - New combination can be done?
- New since the YR, **FCC-hh**: 2.9-5.5% depending on the systematic assumptions (arXiv:2004.03505)
- Muon collider 25% (6%) at 3 (10) TeV

	3 TeV μ -coll. L \approx 1 ab ⁻¹	10 TeV μ -coll. L= 10 ab ⁻¹ 68% prob. inte		30 TeV μ -coll. L= 90 ab ⁻¹
$\delta \kappa_{\lambda}$	$[-0.27,0.35] \cup [0.85,0.94]$ $\rightarrow [-0.15,0.16] (2 \times L)$	[-0.035, 0.037]	[-0.024, 0.025]	[-0.011, 0.012]

collider	single- <i>H</i>	HH	combined
HL-LHC	100-200%	50%	50%
CEPC ₂₄₀	49%	_	49%
$C^{3} ILC_{250}$	49%	_	49%
$C^3 ILC_{500}$	38%	27%	22%
ILC_{1000}	36%	10%	10%
$CLIC_{380}$	50%	_	50%
CLIC_{1500}	49%	36%	29%
$CLIC_{3000}$	49%	9%	9%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC	-	15%	15%
*FCC-hh	-	5%	5%

These values are combined with an independent determination of the self-coupling with uncertainty 50% from the HL-LHC.

Higgs production at large pt

- European Strategy Studies focused on inclusive measurements: new opportunities for measurements of the Higgs couplings at large Q²
 - BSM effects often grow with energy
 - Clear impact on the extraction of EFT constraints via correlations among different processes and kinematical regimes
 - Also this helps mitigating systematic uncertainties and maximizes the robustness of the results
 - i.e. pile-up rejection and trigger capabilities
- Few **examples**:
 - VH at large invariant mass (double differential distributions sometime needed to restore BSM/SM interference)
 - Probing the HWW coupling at high Q² in pp→WH at large mass or in VBF is complementary to measure BR(H→WW)
 - off-shell gg \rightarrow H* \rightarrow ZZ \rightarrow 41
 - Higgs + high-p_T jet

Update in VH to bb and H to $\tau\tau$

The inverse problem

- Progress on how to map BSM models to SMEFT constraints
 - · Include complete 1-loop matching for other models, more NLO effects in fits, and more distributions

The inverse problem

- Progress on how to map BSM models to SMEFT constraints
 - · Include complete 1-loop matching for other models, more NLO effects in fits, and more distributions

Model independent bounds on new physics

Coupling (2σ)	HL-LHC	LHeC	HE-	LHC		ILC			CLIC	C	CEPC	FC	C-ee	FCC
Unitarity Bound			S2	S2'	250	500	1000	380	1500	3000		240	365	ee/eh/hh
$2\delta\kappa_V~[\%]$	3.0	1.5	2.6	1.8	0.58	0.46	0.44	1.0	0.32	0.22	0.28	0.40	0.34	0.24
$\Lambda_V \; ({ m TeV})$	6.0	9	6.4	7.7	14	15	16	10	18	22	20	16	18	21
$2\kappa_g~[\%]$	4.6	7.2	3.8	2.4	4.6	1.94	1.32	5.0	2.6	1.8	3.0	3.4	2.0	0.98
$\Lambda_g \; ({ m TeV})$	51	41	56	70	51	78	95	49	68	81	63	59	77	110
$2\kappa_{\gamma} \ [\%]$	3.8	15.2	3.2	2.4	13.4	6.8	3.8	196	10	4.4	7.4	9.4	7.8	0.58
$\Lambda_{\gamma} \; ({ m TeV})$	120	61	130	150	65	92	120	17	76	110	88	78	86	310
$2\kappa_{Z\gamma}$ [%]	20	_	11.4	7.6	198	172	170	240	30	13.8	16.4	162	150	1.38
$\Lambda_{Z\gamma} \; ({ m TeV})$	34	_	45	55	11	12	12	10	28	41	37	12	12	130
$2\delta\kappa_t$ [%]	6.6	_	5.6	3.4	_	13.8	3.2	_	_	5.4	_	_	_	2.0
$\Lambda_t \; ({ m TeV})$	13	_	14	18	_	9	19	_	_	14	_	_	_	24
$2\delta\kappa_b~[\%]$	7.2	4.2	6.4	4.6	3.6	1.16	0.96	3.8	0.92	0.74	2.4	2.6	1.34	0.86
$\Lambda_b \; ({ m TeV})$	80	100	85	100	110	200	220	110	220	250	140	130	180	230
$2\delta\kappa_{\mu}$ [%]	9.2	_	5.0	3.4	30	18.8	12.4	640	26	11.6	17.8	20	17.8	0.82
$\Lambda_{\mu} \; ({ m TeV})$	590	_	800	970	320	410	510	70	350	520	420	400	420	2000
$2\delta\kappa_{ au}$ [%]	3.8	6.6	3.0	2.2	3.8	1.40	1.14	6.0	2.6	1.76	2.6	2.8	1.46	0.88
$\Lambda_{ au} \; ({ m TeV})$	220	170	250	290	220	370	410	180	270	330	270	260	360	460
$2\delta\kappa_h$ [%]	94	_	40	40	58	54	20	92	72	22	34	38	38	10
$\Lambda_h \; ({ m TeV})$	15	_	23	23	19	19	32	15	17	30	25	23	23	45

Going forward

EF012-whitereport

Sally Dawson Adrey Korytov Patrick Meade Isobel Ojalvo Caterina Vernieri

March 2022

- 1 Introduction
- 2 Why Higgs is great
- 2.1 Centrality of Higgs in SM
- 2.2 Questions the Higgs leaves us
- 2.3 Status report of what we know for sure and what's missing experimentally (self couplings, light yukawas, "unitarization")
- 2.4 New types of measurements vs increased precision (e.g. differential)
- 2.5 What BSM Higgs physics can influence
- 2.6 Models of BSM Higgs

Models addressing physics questions vs exploring Higgs like possibilities/property modifications

- EFT
- Higgs portal
- Singlet
- Doublet
- Higgs importance in larger frameworks?
- Naturalness, Compositeness

- 3 Mass, width, spin measurements
- 4 Update on theory calculations of Higgs rates
- 5 Impact of differential measurements
- 6 Higgs coupling measurements with emphasis on light Yukawas
- 7 CP violating Higgs coupling measurements
- Update on prospects for observing HH
- Update on new analysis techniques for Higgs physics and what they mean
- 10 How coupling measurements and HH impact understanding of EFTs
- 11 Why go beyond the SM?
- 12 The big motivations for BSM Higgs
- 13 Some models showing complementarity of direct searches and precision measurements: Singlet, 2HDM,?
- 14 Targets for precision based on models
- 15 Detector/accelerator requirements to observe new physics

Expanding 1:

- - How do we go further, energy, luminosity, clean environment (snowmass options, connect to AF, IF)

Towards the final reports:

- · Which physics beyond the Standard Model can be probed by precision measurements of Higgs couplings?
 - How precise do these measurements need to be in order to probe BSM physics scenarios?
 - How are direct searches for new Higgs-like particles complementary to precision Higgs coupling measurements
 - This should be studied by exploring the complementarity between HL-LHC and future colliders
 (accounting for their different timelines).
- Does the Higgs boson result from the scalar potential of the Standard Model?
 - How can measurements of double Higgs boson production be improved to better probe the potential?
 - Which is the target precision for this? taking into account the correlations with the other Higgs measurements
- How can measurements in the Higgs sector be combined with measurements in other sectors to improve our understanding of new physics scale?
- What theory calculations are needed to enable the theory precision to match the projected experimental precision of future measurements?

Dedicated discussion on Tuesday

- We will be working closely together with EF04 within the SMEFT framework:
 - Estimate EFT uncertainties (NLO, dim-8 effects, linear vs quadratic...), new physics in backgrounds, theoretical constraints (positivity, analyticity)
 - More combined Higgs and top analysis
 - 1. effects of top dipoles or 4 fermion ops. with tops
 - 2. constraints on top EW couplings from their NLO effects in Higgs and diboson processes (particularly relevant for low-energy colliders below ttH threshold)
 - Include differential observables
 - Explore more flavor scenarios (and make connection with flavor data)
- SMEFT is a baseline, how we account for specific assumptions and model-dependency?
 - Complementarity with new physics searches

Summary plots/tables

- Higgs couplings:
 - Include updated list of machines (muon collider, C³ are recent developments) and their parameters (including timelines)
 - Re-visit some of the assumptions (i.e. flavor..) since the ESG
 - Summary of latest theory cross sections (distributions too if available)
 - New Global fits
- · Some example maps of new physics phase space to constraints on EFT operators
 - · Plots that demonstrate in creative ways the BSM sensitivities of various measurements
- New physics benchmarks for resonant and non-resonant HH that we could use for interpretations as the precision on the self-coupling improves

Dedicated discussion on Wednesday

Extra

Wish list for the global fit

Inputs: Higgs @ HL-LHC

in unit of %

HL-LHC	3 ab-1 @ 14 TeV ATLAS+CMS (S2)								
prod.	ggH	VBF	WH	ZH	ttH				
σ	-	_	_	_					
σxBR_{bb}	19.1	_	8.3	4.6	10.2				
σxBRcc	_	_	_	_	_				
σxBR_{gg}	-	_	_	_	-				
σxBRzz	2.5	9.5	32.1	58.3	15.2				
σxBR _{ww}	2.5	5.5	9.9	12.8	6.6				
σχΒΒττ	4.5	3.9	_	_	10.2				
σχΒΡη	2.5	7.9	9.9	13.2	5.9				
$\sigma xBR_{\gamma Z}$	24.4	51.2	_	_	_				
σχΒΡμμ	11.1	30.7	_	_	_				
σxBR _{inv.}	-	2.5	_	_	_				
mн			10-20MeV						

EF04 link

wishlist: correlation matrix; differential x-section is not included now, but can be considered if available

Accuracy vs. Luminosity

	Stage		500		5	00 LumiUl	P
Scenario	\sqrt{s} [GeV]	500	350	250	500	350	250
G-20	$\int \mathcal{L} dt \ [fb^{-1}]$	1000	200	500	4000	-	-
	time [years]	5.5	1.3	3.1	8.3	-	-
H-20	$\int \mathcal{L} dt \ [fb^{-1}]$	500	200	500	3500	-	1500
	time [years]	3.7	1.3	3.1	7.5	-	3.1
I-20	$\int \mathcal{L} dt [\text{fb}^{-1}]$	500	200	500	3500	1500	-
	time [years]	3.7	1.3	3.1	7.5	3.4	-